Tuesday, May 3, 2022

TAOCP Exercise 1.2.4-35

 TAOCP

Excise 1.2.4-35

$ \lfloor \frac{ (x + m) }{n} \rfloor = \lfloor \frac{  \lfloor x \rfloor +m }{n} \rfloor $, where $x$ is real, $m$ and $n$ are integers, $n >0$


Proof:

Obviously  $\lfloor(x+m)/n \rfloor \geq \lfloor(\lfloor x \rfloor + m)/n \rfloor $, the only case that it is not equal is $(\lfloor x \rfloor +m)/n $and $(x+m)/n$ lies on different sides of an integer $k$, which means 

$$1 > k -(\lfloor x \rfloor + m ) / n > 0 $$ 

and 

$$ (x+m)/n - k > 0 $$ ......(1)

furthermore, $\lfloor x \rfloor + m $is integer, thus 

$$k - (\lfloor x \rfloor + m)/n \geq 1/n $$......(2)

from (1) and (2)

$(x+m)/n -k + k - (\lfloor x \rfloor + m)/n = (x- \lfloor x \rfloor)/n > 1/n$  which is impossible. so only equal relation is valid.


No comments:

Post a Comment